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Last time
When users cannot predict how input controls affect outputs the interface is terrible 

– True of black box AI
– True of humans
– Will always be true until we can develop ways to explain the mapping from inputs to outputs

Approaches to improving AI interfaces 
– Allow conversational turn taking, Establish common ground/shared semantics, Provide repair 

mechanisms
– Deal with ambiguity of natural language by developing other input modalities 
– Enable iterative refinement, by maintaining shared structures 
– Use code as an intermediate language to enable iterative refinement via incremental actions
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Human-Centered AI
Unit 4

Human-Centered AI
Working with Unpredictable Black Boxes



Cognition
Unit 5

cognitive models
visualization
(and don’t forget the design cognition that we already covered)



Announcements
Quiz 3 on Wed
     Collaboration 
     Human-Centered AI 
     Working with Unpredictable Black Boxes 
     Cognitive Models

5



Today
Low-level cognitive models

The model human processor, GOMS, KLM
Where are they now?

Cognition in the world: embodied and distributed cognition
Cognitive limitations
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Building a better mouse(trap) 
[Card and Moran 1988]

Doug Engelbart and Bill English felt that their mouse was an 
interim device, and wanted to make something better
But none of their inventions were actually improving target 
acquisition speeds
So, Stu Card and Tom Moran tested the mouse in the lab on a 
variety of pointing tasks
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Performance was very well modeled by Fitts’s Law. 
(Fitts’s Law is about human pointing, not mouses.)
   T = a + b log(D/S +0.5), D = distance, S = tgt. size 

Moreover, the mouse’s constant of proportionality (b = 
0.96 sec/bit = 10.4 bits/sec) is approximately the same 
with the mouse as with the hand alone — so the 
mouse is near optimal, you actually can’t do better! 

Here, modeling solved a problem that engineering 
couldn’t
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Line = Fitts’s Law prediction
Dots = measured mouse time

Building a better mouse(trap) 
[Card and Moran 1988]



“User technology includes hardware and software techniques […] 
but it must include a technical understanding of the user and of 
the nature of human-computer interaction. This latter part, the 
scientific base of user technology, is necessary in order to 
understand why interaction techniques are (or are not) successful, 
to help us invent new techniques, and to pave the way for 
machines that aid humans in performing significant intellectual 
tasks.”
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Model Human Processor

Let’s be ambitious!



The Model 
Human Processor

A unified, low-level engineering 
model of user task completion 

Processors 
     Perception 
     Cognition 
     Motor 
Memory 
     Working, Long-term
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[Card, Moran and Newell 1983]



Why Model 
Humans?
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So we can better understand why 
what works works, and why what 
doesn’t work is broken
Apply MHP to predict time and accuracy of 
using interface

Apply MHP as a simulation of human user 
(with constraints) to evaluate interface designs



Perceptual Proc.
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Time needed to integrate/fuse 
perceptual experience of the world
    TP = 100 msec (Quantum of experience)
         = 10 fps:  Rate needed for film to look cts.   



Perception of Causality 
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[Michotte 1946]

What do you see?



Perception of Causality 
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[Michotte 1946]

What do you see?



Perceptual Processor
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Time needed to integrate/fuse 
perceptual experience of the world
    TP = 100 msec (Quantum of experience)
         = 10 fps:  Rate needed for film to look cts. 
         = Rate needed to imply causality 



Memory
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Perceptual processor puts information 
into (vis/aud/…) sensory store
    very fast decay 200-1500 msec 
    small units of information (e.g. letters)

Some info then chunked and put into 
longer decay working memory
    decay 5-225 sec (content dependent) 
     7 +/- 2 chunks (e.g. words)

Some info then recoded (semantically) and 
put into non-decaying long-term memory



Working Memory
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Decay 5-225 sec is content dependent
    1 chunk (73 sec) 
    3 chunks (7 sec)

Can use maintenance rehearsal  
(e.g. rote repetition) to retain in WM
Attention span
    Interruption time > decay time



Long Term Memory
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Very large capacity (semantic encoding)
Associative access (context at insertion is key for retrieval)
    Fast read: 70msec 
    Expensive write: 10s

Can move WM to LTM via rehearsal and elaboration 
    Rehearsal (e.g. rote repetition)

    Elaboration to recode information semantically  
        relate new material to material already learned 
        link to existing knowlege or categories 
        attach meaning (e.g. make a story)



LTM & Forgetting
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Causes for not remembering an item?
    1. Encoding failure: never stored 
    2. Storage failure: was stored but now gone 
    3. Retrieval failure: Can’t get out of storage

Interference model of forgetting 
    One item reduces ability to retrieve another 
   Proactive interference: Earlier learning  
       reduces ability to retrieve later info 
    Retroactive interference: Later learning  
       reduces the ability to retrieve earlier info.



WM and Program Tracing
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YO
U READ THIS

[Crichton, Agrawala, Hanrahan 2021]

Examines how people trace simple programs
    Order in which lines are exposed (linear vs. on-demand) 
    How often need to re-visit a line already seen

WM holds ~7 (variable, value) pairs
Both linear and on-demand orderings frequently used
People make different WM errors depending on 
ordering strategy with more errors using on-demand



Cognitive Proc.
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Time needed to observe WM and 
operate on it (e.g. check if 2 chunks match)

    TC = 70 msec

Fundamentally serial 
     1 locus of attention at a time



Motor Proc.
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Time needed to take input cmd from 
cognitive proc. & execute it with body
    TM = 70 msec

Pianist (up to 16 finger movements/sec) 



Motor Experiment
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Ask person move pen back and forth as quickly as possible:

Open loop: 68 reversals/5sec  = 74 msec/reversal
Closed loop:  Subj. perceives if stroke is staying within lines, sends info to   
    cognitive proc.  which can advise the motor processor to adjust.
                     Total time = TP + TC + TM = ~240msec
                                   20 corrections/5 = 250msec



Using the Model Human Processor

25

Low level task: I will flash 2 symbols x and y on screen serially, 
press a key if they are both numbers
Clocks starts when 2nd symbol y is flashed 
Move symbol y into visual store WM                             Tp

Recognize both symbols x and y as codes               + Tc

Classify the both codes as numbers                          + Tc

Match the fact that they are both numbers                                 + Tc

Initiate motor response                                                          + Tc

Process motor command                                                     +Tm

                                                                                  Approx 450 (180-980) msec



GOMS
Goals: what the user seeks to achieve
Operators: low-level operations 
Methods: compositions of operations together
Selection rules: how to decide between multiple available methods
Given this specification, a system can trace a path that a user would 
take through a system to achieve their goal and report how long it 
would take
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KLM [Card, Moran and Newell 1980] [Raskin 2000]

Keystroke Level Model: a specific model in 
the GOMS family. Designed to be quick and 
easy to use, no need to build a prototype.
Provides a bunch of operators and methods: 
not GOMS from scratch 
Six operators: push a key, point to a target on 
the display, moving hands between keyboard/
mouse/etc., drawing a line (seems extraneous 
to me), making a decision about the next 
step, waiting for system response 27

Operator Time
Key/Click 0.20
Point 1.1
Homing 0.4
Draw .9nD + . 16 lD
Mental 1.35
Sys. Resp. Depends

YO
U READ THIS



Raskin’s KLM Rules  
First break task into H,P, K,D, R (then use rules) 
R0: Insert M 
    In front of all K 
    In front of all P’s selecting a command (not setting args)

R1: Remove M btw fully anticipated operators 
    PMK to PK

R2,R3: if MKs form cog. unit delete all Ms but first 
    typing “4564.23”: MKMKMKMKMKMKMK to MKKKKKKK 
    typing “enter” ”enter”: MKMK to MKK   (redundant terminator) 

R4: if K terminates freq. used fixed length string (e.g. cmd) 
delete M in front of it 
    typing “cd” ”enter”: MKKMK to MKKK 
    typing “cd” “class” “enter”: MKKKMKKKKKMK (do not remove last M) 28

Operator Time
Key/Click 0.20
Point 1.1
Homing 0.4
Draw .9nD + . 16 lD
Mental 1.35
Sys. Resp. Depends

YO
U READ THIS



Converting Temperature
Convert 92.5
Assume focus on dialog,  
hands at keyboard, typing  
enters text into text field
Assuming goal C to F
    H PK H KKKK K to H MPMK H MKMKMKMK MK  to H MPK H MKKKK MK (7.15sec) 

Assuming goal F to C
    KKKK K to MKMKMKMK MK to MKKKK MK (3.7sec)
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YO
U READ THIS

Avg time: 5.4sec



Where are they now?



Models as 
inhuman models 
of how we act
Plans cannot succeed in complex 
environments, which instead require 
constant reflection and reorientation 
[Suchman 1988] 

Anthropological comparison: how people 
perform wayfinding
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GOMS Sensitive to Methods & Operators 

In GOMS researcher defines operators and methods. Need to be 
careful to make sure they are appropriate to task and context

“there’s no accounting for taste” — GOMS will not object to a baroque set 
of operations that a user might never use in practice 
Outcomes will depend strongly on exactly which operators and methods 
you define and make available to the model
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GOMS Relatively Quantitative
GOMS explicitly capture low-level cognitive behaviors of interest 
quantitatively

The Model Human Processor estimates were based on careful lab studies

      But absolute numbers less reliable than relative values 

Can be less work than a user study 
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Today
Low-level cognitive models (e.g. GOMS and KLM) have fallen out of 
favor, largely because they require substantial effort to create, vs. 
directly prototyping
However, for low-level optimizations and interface decisions, 
cognitive models can be very useful 
And, they remain important to HCI as an example of how 
grounding our designs in psychological methods and results 
can lead to more effective approaches and insights
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Thinking in the world

Cognition for ubiquitous computing environments
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Recall: “Pictures Under Glass”
[Victor 2011]



Embodied cognition 
[Dourish 2004; Klemmer, Hartmann, Takayama 2006]

Our cognition leverages embodiment—our bodies:
We learn through interaction with the world
We leverage the environments around us to make us smarter
We communicate our intent through much broader mechanisms than 
just our fingertips: consider musicians, dancers, construction workers, 
professors on stage trying to get your attention
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Epistemic action 
[Kirsh and Maglio 1994]
Tetris as an example task to study cognition
Players see a piece, rotate it, and drop it into position

However, experts perform more rotations than 
strictly needed to position the piece. Why? 

We perform actions in the world to uncover 
information that is hard for us to compute mentally
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Hatched area: 
required to 

position 
the piece

Gray area: 
extraneous 
rotations



Distributed cognition 
[Hutchins 1995]
Theory: social and physical environments, not just people, can 
exhibit intelligence
Source: ethnography on the navigation bridge of Navy ships

Intelligent navigation is emergent — from people who coordinate via 
structured codes, and from their tools

Intelligent navigation does not reside within any single individual 

Implication: when analyzing a system, look for cognition that 
arises between people or between people and artifacts
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Cognitive limitations



Information overload
As we get more and more information in our environments, we 
cease being able to make effective use of it — our decision making 
stops improving or even gets worse
Yerkes-Dodson Law: as arousal (not volume of information) 
increases, performance increases, but only to a point [Yerkes and 
Dodson 1908]
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Low arousal
(Bored)

High arousal
(Stressed)



Multitasking has costs
People have ~10 different working spheres per day, and spend 11.5 
min per working sphere before switching [González and Mark 
2004]

When someone gets interrupted, they take 25 minutes on average 
before resuming [Mark, González, and Harris 2005]

People who self-report as high multitaskers are actually worse at 
multitasking [Ophir et al. 2009]

Proposed mechanism: worse at filtering out irrelevant stimuli
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Summary
Cognitive models create computational proxies of human 
behavior, to help us characterize and understand how we will 
engage with a piece of technology

Model human processor, GOMS, KLM

Thinking in the world requires an understanding of cognition as well: 
embodied cognition emphasizes how we think with our bodies, 
whereas distributed cognition emphasizes how we think with the 
environment
When our cognition is overloaded, performance decreases
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